The Acoustic Analysis Wor kbench

Keith Bromley, Bob Dukdow, Jerry Symanski
SPAWAR Systems Center, San Diego

aav@spawar.navy.mil
Abstract

This paper describes a set of software components, caled the Acoustic Andlysi's Workbench (AAW), that
can be used for abroad set of applications in the red-time andyss and visudization of acoudtic input sgnas.
As a smple example, some of these components can be interconnected to caculate and display a diding-
window spectrogram (i.e., a short-time Fourier transform) of a Sngle-channd input time-series. A more
complex arrangement of these components can perform beamforming from an array of acoudtic sensors
(hydrophones) and compute the spectrogram of every beam. Still other components can be added to this
arrangement to transpose this output data into a time vs. beam-number display for each frequency, etc. In
generd, end users of this gpplication will be naval scientists and engineers exploring agorithms for sgnd
transformation and feature extraction from acoudtic time-series (typicaly from arrays of sonar sensors).

Underlying Foundations

The basic premise of thiswork rests on three underlying foundations: (a) rapid advances in the cagpabilities of
modern computers, (b) the ubiquity of the Microsoft Windows OS, and (c) the recent availability of good
programming tools for streaming data: flow processing.

High-performance computing has historicdly been thought of as most appropriate for "grand chdlenge"
scientific computations (e.g., computationd fluid dynamics and sructurd mechanics) - but generdly not
appropriate for rea-time or embedded applications. However, the relentless continuation of Moore's Law
in improving microprocessor performance and the increasing commercid deployment of parale computer
achitectures are rapidly providing sysems which are extremey capable for red-time sgnd/image
processing.

For the Intel X86 architecture, indications of the dramatic growth in computationa capability are the increase
in tranggors-per-die from alowly 29K for the 8086 chip in 1978 to 42M for the Pentium 4 chip today, and
the impressive increase in clock frequency from 8 MHz then to 1.7 GHz today. Several manufacturers have
announced pardld supercomputers employing up-to-32 of the latest Intel chip - the Itanium.

Microsoft Windows is the de-facto dominating operaing sysem (OS) in both the persond computing and
commercid/business computing worlds. It isused in over 90% of dl computers, and dmost dl current high-
school graduates in the U.S. have some familiarity with using it. It is clear that there is Sgnificant potentid
gain to writing gpplications software such that the user-interface isin agrgphica environment familiar to most
users. Microsoft produces a verson of thelr OS cdled the "Windows 2000 Datacenter Server” which
works on up-to-32 shared-memory parallel processors.

Microsoft provides middleware (a hierarchical set of C++ objects, associated run-time libraries, and tools)
cdled DirectX that amplifies the programming of sgna/image processing gpplications. DirectX's run-time
libraries are automaticaly loaded during standard Windows inddlation; the application programming
interfaces (APIs) are well defined and documented; and it's software development kit SDK) is fredy
available from the Microsoft web Ste.

While Microsoft's motivation for developing the DirectX APIs is to further their penetration into the
computer gaming and audio/video streaming markets, it is the conjecture of the authors that this technology
can be fruitfully applied to serious sensor Sgna processing. Furthermore, to flourish in these two mass-
market application areas, Microsoft is highly motivated to improve therr DirectX implementations as Intel
improves their microprocessors by adding hardware support for new microingructions for multimedia
extensons (MMX) and streaming-SIMD extensons (SSE). Hence, gpplications written to the high-leve
DirectX AP will automaticaly improve their run-time performance by making very efficient use of the latest
Intel architecturd enhancements and ingdruction-set tweaks - al invishbly to the gpplication developer or end
user.

The key DirectX component for this project is DirectShow, which implements a data-flow filter-graph
programming paradigm in which data is streamed through a graph of filters. There are three types of filters
source, transform, and renderer. Source filters retrieve data from a media source (such as a microphone, a
camera, alocd datafile, or the internet). Transform filters manipulate data and pass it to the next filter in the
graph. The arrangement of transform filters defines the processing adgorithm. Findly, renderer filters output
the data to some externa transducer - such as aloudspesker, a video monitor, adatafile, or the internet.

The Acoustic Analysis Wor kbench

The Acoustic Andlyss Workbench (AAW) is a set of software components (i.e,, DirectShow filters) that
can be used for a broad set of gpplications in the red-time anadysis and visudization of acoudtic input Sgnas.
It is a highly flexible “problem-solving environment” for audio decomposition. Asasmple example, some of
these filters can be interconnected to calculate and display a diding-window spectrogram (i.e., a short-time
Fourier transform) of a Sngle-channd input time-series. A more complex arrangement of these components
can perform beamforming from an array of acoustic sensors (microphones) and compute the spectrogram of
every beam. Still other components can be added to this arrangement to transpose this output data into a
time vs. beam-number display for each frequency, etc. The user typicaly uses a Microsoft gpplication called
GraphEdit (available in the DirectX SDK) as a gragphica point-and-dick "programming environment” for
sdecting the filters, arranging them into a complete graph, and running the resultant graph with the sdected
input data - which may be afile or a"live" sreaming input (e.g., amicrophone or a sensor array).

The AAW software is written in C++ and, & the completion of this project, al source code will be openly
released into the public domain. (Although Microsoft only didtributes binaries for its DirectShow runtime
system and it's grgph editing gpplication.) The most computationdly demanding filters have been written to
take advantage of multithreading. Hence they will achieve scdable speed-up as they are moved from a

angle-CPU desktop PC to a multi-CPU workstation to a symmetric-multiprocessing supercomputer. For
computationd efficiency, the code makes use of the Intel Signal Processng Library (SPL) - a st of
mechine-language implementations of common sgna processing functions. Thus some of the AAW code
will only run on Intel CPUs.

AAW FILTERS

This section presents a brief overview of the individuad AAW filters. (These are generdly in the order in
which they would typicaly appear in a graph - except for the find two which are utility functions which can
go amogt anywhere))

AAW File Sour ce (AAWFileSour ce.ax)

The AAW File Source filter is a source filter designed to read time-domain datafrom a.wav file and feed it
to downgtream filters. Note that the sample rate of the output data stream can be different than the sample
rate read from the data file - which is useful if ether the deta rate on the file isincorrect or if it is desred to
render the data at arate which isfaster or dower than red time.

AAW Frequency Domain Beamformer (AAWFDBF.ax)

The AAW Frequency Domain Beamformer processes an input stream that conssts of multiple channds of
time-domain data samples. It is assumed that each input channe represents the time series from one
hydrophone dement of a sonar array. The output stream from this filter is some number of channds of time-
domain data samples representing beams formed in specific physica directions. The number of output
channds (beams) is independent of the number of input channels (elements). The dgorithm currently assumes
isovelocity propagation of the sound field and the beamforming isfixed (i.e., there is no adaptive processing).

The basic concept is that a short-time Fourier transform is gpplied to each of the data channels to produce
an array of narrow-band time samples (at a reduced sample rate) for each channd. For each frequency bin
the input-channd (element) data are combined with appropriate phase delay (and array amplitude shading if
desired). For each beam, dl of the frequency bins are then recombined into a single time-series output
sream a the origind sample rate usng an inverse Fourier transform.

The current implementation assumes thet the array is a sraight line, that the channds are smultaneocudy
sampled, and that the elements are linearly spaced dong the array a a user-sdected spacing. Since the
actud beamforming is performed using a phase weight table that is computed during run initidization, the
code could easily be modified to accommodate other array configurations, beam steering directions, and/or
data sampling schemes. The current implementation was limited primarily to avoid to complexity of having the
user input N arbitrary X, Y, Z postions for the hydrophone dements or individua beam- steering angles.

AAW FFT (Fagt Fourier Transform) (AAWFFT .ax)

The AAW FFT filter performs a power-of- 2 length Discrete Fourier Transform (DFT) operation on each of
an abitray number of channds of time-domain, red-vaued input data. The output contains the same
number of channels as the input but each output time sample for each channd is a complex frequency vector

of non-negative frequency bins. (The number of complex frequency bins is hdf the input block sze) The
user may sdlect (using the property page) the DFT block length, the block overlap in percent, and a shading
window function to gpply to each input data block prior to the DFT.

AAW Congant-Q Analysis (AAWConstQ.ax)

AAWCongtQ performs congtant-Q spectral analyss on a red-vaued, time-domain input data stream. The
term congant-Q implies that the andysis bandwidth of each frequency bin is proportiona to it's center
frequency. Conceptudly, the spectrd andysis is accomplished with a bank of bandpass filters whose center
frequencies are linearly spaced in log frequency. The ratio of center frequency over 3 dB bandwidth is the
samefor dl band filters (i.e,, dl thefilters have the same Q) and the upper 3 dB cutoff frequency of one band
filter is the same as the lower 3 dB cutoff frequency of next higher band filter. The input stream may contain
an arbitrary number of channds that are each andyzed independently. The output contains the same number
of channdls as the input but each output time sample for each channd is a complex frequency vector.

The basc analyss approach and filter dgorithms are adgpted from [1]. The bandpass filter center
frequencies and bandwidths are designed such that a user-selectable integer number of bands exactly spans
(to the 3 dB poaints) an octave. First, a set of band filters is designed to anadyze a sngle octave. After
andyzing the firg octave the data is lowpass filtered and decimated by two so that the same st of filters
(running at the reduced sample rate) can be used to analyze the next lower octave. The process of lowpass
filtering, decimating, and andyzing an octave is repesated for the number of octaves pecified by the user.

AAW Decimatation Filter (AAWDecimate.ax)

The AAW Decimate filter provides both tempora decimation (i.e., time resampling) and bin windowing (i.e,
the output bins can be a contiguous subset of the input bins). Note that “bins’ often correspond to
frequencies but this may not dways be the case. Only complex vaued, floating-point input and output data
types are currently supported. This means that this filter must generdly be placed downstream from an

AAWFFT or AAWCongtQ filter and prior to the normaizer. There may be other types of filters before or
after AAWDecimate (e.g., AAWChanSdect, AAWChanTee, and AAWTranspose) within this sequence.

The number of output channels is dways the same as the number of input channds. Channds can ke
reduced or rearranged using AAWChanTee or AAWChanSdlect.

For tempora decimation, the user sdects a “Tempord Decimation Ratio” (denoted by “R’) which is an
integer greater than or equd to 1. The output sample rate is equa to the input sample rate divided by R The
user can currently select one of two decimation schemes:

1 - "discrete resampling” Smply outputs one out of every Rinput samples.

2 - "maximum over range" outputs the maximum magnitude sample out of each successive group of R input
samples.
For bin windowing, the user selects a garting and ending input bin number, where the firgt binis 0. Only
input binsthat fal between the start and end bins (inclusive) are copied to the output stream.

AAW Normalizer (AAWNorm.ax)
The AAW Normalizer filter implements severd normdization methods converting complex floating-point
vector data into 8-bit unsgned integers which can be directly mapped to color/intengty vaues for display by

the renderer filter. The input data stream may contain any number of channds where a “time samplée’ for
each channe is a vector of complex bins. A bin most commonly represents a frequency. All channels
presented to the normdization filter are independently processed and output together in a Single output data
Stream.

Using the property page, the user can sdect one of eight normaization schemes. These include maximum-
over-line (dgnd magnitude), maximum-over-line (Sgnd power), fixed gan (3gnd magnitude), fixed gan
(logarithmic output),) Two-Pass Mean, Order Truncate Average, Split Three-Pass Mean, and Split
Average Exclude Average. The last four are described in [2] and use various Satisticd techniques to better
visudize week sgnas buried in noise,

Unlike mogt of the other AAW filters, parameter changes made while this filter is running take effect
immediately for the next full data block processed. This dlows the user to interactively test the effect of
various normalization schemes and parameters such as gain and/or dynamic range.

AAW Trangpose (AAWTranspose.ax)

Thisfilter takesin a stream of data where the dimensions of the data are referred to as time, channd, and bin.
Typicdly channds will be different hydrophone eements or beams and bins will be a frequency
decomposition of the data. AAW Transpose transposes the channel and bin dimensions so that, for example,
arenderer that displays time versus bin for a given channe can be used (unchanged) to display time versus
channd for agiven bin.

AAW Renderer SC (Single Channel Renderer) (AAWRenderer SC.ax)

The Single Channel Renderer filter digplays the results of signd processing by upsream AAW filters. The
input pin of the Single Channd Renderer is dways downstream from an AAW Normalizer filter. The data
comes to the Renderer as a buffer of bytes. Since the user may wish to view earlier data and move around
in alarge data buffer, the renderer window has scrollbars so the user can view al of the data Other useful
features are; the ability to change the color map, data magnification, and indication of data vaues under the
cursor. There are four display typesfor the Single Channd Renderer:

Top-to-bottom - old data moves down,

Bottom-to-top - old data moves up,

Left-to-rignt - old data moves horizontdly to the right, and
Right-to-left - old data moves from right to left.

The data is recelved into a large fixed-sze circular buffer memory and stored as bytes. The bytes will be
displayed using the user-selected color table in a window appropriate to the available screen size and color
depth. For instance, a 1024 point FFT would result in 512 frequency bins across the width of a top-to-
bottom renderer window. The user is able to sdlect the size of the window and the (horizontal and vertical)
megnification of the data. At aminimum, each data eement is represented by a single screen pixd.

Figure 1 shows a sample output of the AAW Renderer displaying a gpectrogram of some whae sounds with
time progressng from top to bottom and frequency increasing from left to right. The Static picture shown in
Figure 1 does not do judtice to the fact that the user actudly sees a dynamic scrolling "waterfdl” display with
the instantaneous spectrum at the top of the screen in red-time synchronization with the sound being
processed and (if desired) played through the computer's speakers.

{AAW - SC: ID #1: Info: FFT =10 x|

(Chan 0 Bir: 270 [Freq 210935 Hz |E=Ik_153_ ﬁ'ime:-ST.éiéD_Sec EEEI_:}S_IEFA:_ o

Fig. 1. Sample Output of the AAW Renderer. Time progresses from top to bottom and frequency
increases from left to right.

AAW Renderer MC (Multi Channel Renderer) (AAWRenderer M C.ax)

The multi channd renderer differs from the single channd renderer in that multiple channels are displayed in
one window. The filter determines how many channds are in the incoming data and calculates how many
window “panes’ to use. The user can specify how many channels to display, the firg channd to show, and
the number of rows and columns to use in positioning the window “panes’.

AAW Channe Tee (AAWChanTee.ax)

AAWChanTee converts a angle data stream (input pin) containing multiple channels to one or more data
sreams (output pins) each containing only a single channdl. The user may sdlect which input channd is
mapped to each output pin. Different output pins may contain data from the same or different input channels.
The filter garts with a single output pin, but output pins are added as output connections are made so that
thereis always a gpare output pin to alow another connection.

AAW Channd Sdect (AAWChanSdect.ax)

The AAWChanSdect filter converts a single data stream (input pins) containing multiple channels to one or
more data streams (output pins) containing (potentialy) different channels than the input stream. All output
pins contain the same data stream but this data stream is a user-defined subset of the input- stream channels.
The filter garts with a single output pin, but output pins are added as output connections are made so that
there is dways a spare output pin to alow another connection. The user can set both the number of output
channes (which may be more or less than the number of input channels) and the mapping between input and
output channels.

Scalability

While our work in the coming year will emphasize scdability improvements, some prdiminary
experiments have been performed. Simulated data from a hypothetica 128-element sonar array, with adata
sample rate of 1000 Hz, was processed through a graph containing the File Source, Frequency-Domain
Beamformer, Channd Tee, Normaizer, and single-channel Renderer filters. 128 beams were computed and
one was Hected for subsequent andyss and diding spectrogram display using a 2,048-point DFT with a
50% overlap. The measured performance was

CPU's Execution Time Measured Speedup Ideal Speedup
1 248.4 sec 1.00 1.00
2 135.0 sec 1.84 2.00
4 79.5 sec 3.12 4.00
8 63.5 sec 3.91 8.00
Conclusions

The authors hope that this software will simulate a community of sgnd-processing programmers to further
add to it's usefulness. We invite others to fruitfully expand upon it's cgpabilities by developing more
DirectShow filters for interesting audio transformations.

Acknowledgements
This software was developed under the SIP-6 project within the Signd/Image Processng
computationd technology area within the Common HPC Software Support Initiative (CHSSI) under the
DoD High Performance Computing Modernization Program. We wish to thank Dr. Richard Linderman, Lt.
Cal. Jm Albert, Mr. John Grosh, and Dr. Ledie Perkins for their continued support of this effort.

References

1. F. Haris “An Efficient Congant-Q Andyzer Architecture Using All-Pass Recursive Filters’, San Diego
State University, (to be published).

2. W. Struzinski and E. Lowe, “A Performance Comparison of Four Noise Background Normalization
Schemes Proposed for Signd Detection Systems’, J. Acoust. Soc. Amer., Vol. 76 (6), 1738-1742,
December 1984.

